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Pulse response functions of dielectric 
susceptibility 

Y. Y. YEUNG,  F. G. SHIN 
Department of Applied Physics, Hong Kong Polytechnic, Hung Horn, Kowloon, Hong Kong 

As dielectric response in the time domain is becoming increasingly of experimental relevance 
and as such responses for quite a number of well-established susceptibility formulae are still 
unknown, we examine in this paper how pulse response functions may be calculated from 
susceptibility by use of various integral transform methods. We need to specialize some 
parameters in many cases to keep the mathematics sufficiently tractable. The asymptotic 
behaviour of pulse responses are then classified. Finally we comment on the adequacy of the 
Shin-Yeung response in the time domain. 

1. Introduct ion 
There exists in the literature a variety of formulae (see 
e.g. reference [1]) for the description of dynamical 
dielectric susceptibility ;~(co) of dielectric materials. 
Some are built directly from the step-response func- 
tion (or time decay function of the polarization) ~(t) 
such as in the Debye [2], Williams-Watts [3] and 
Dissado-HiU [4] models while others are modified 
either from the complex 2(co) of the Debye formula 
Z(0)/(1 + icoz) where z is the relaxation time constant, 
or simply from its loss part cox/(1 + co2z2). On the 
other hand, Shin and Yeung [5] have discovered a 
very general expression for the dielectric susceptibility 
spectral shape function if(c0)= 2(o3)/Z(0) from the 
solution of the non-linear differential equation 

~(~(F)) = kS(F) (1) 

where k is a parameter and ~ is a differential operator 
defined by 

d2 
.~(v) = Xdx~-(lnF) + (ln~') 

where x = coz. It is demonstrated in that paper that 
the Debye, Cole-Cole [6], Davidson-Cole [7], 
Havriliak-Negami [8] and Nakamura-Ishida [9] 
complex dielectric susceptibility formulae as well as 
the Fuoss-Kirkwood [10], Jonscher [11] and Hill 
[12] dielectric loss formulae all satisfy Equation 1. 
The solution to Equation 1 has been obtained as 

F(x) = Nsecha(bln0x) (2) 
X c 

where N is a normalization constant and the various 
parameters a, b, c and 0 corresponding to the afore- 
mentioned spectral shape functions were worked out 
in [5]. In particular, Shin and Yeung [13] have re- 
cently suggested a new empirical dielectric loss for- 
mula which is a special case of Equation 2 with b = �89 
and has a real susceptibility integrable from 
Kramers-Kronig relations. There are however still 

several famous dielectric susceptibility formulae such 
as the Dissado-HiU, Williams-Watts, Kirkwood- 
Fuoss [14], Fr6hlich [15] and Matsumoto-  
Higasi [16] formulae having forms at variance with 
Equation 2. Their common feature is that the suscepti- 
bility is derived subsequently from a pulse response 
function or distribution of relaxation times. Basically, 
the pulse response function represents the time do- 
main properties of the dielectric material and is meas- 
ured by the transient decay (or relaxation) current 
which can supplement the frequency domain proper- 
ties provided by the dynamical dielectric measure- 
ments. There is increasing popularity in modern in- 
strumentation with respect to dielectric studies to 
obtain frequency domain information via the use of 
hardware FFT on transient measurements. This in a 
way is making the pulse response function increas- 
ingly of direct experimental concern. Since Equation 2 
is not sufficiently general to cover some well-known 
susceptibility formulae in the frequency domain, it will 
be useful and perhaps also illuminating to study their 
differences in the time domain. 

Unfortunately, while systematic compilation of sus- 
ceptibility formulae are fairly well done in the litera- 
ture, there is little similar effort for the corresponding 
pulse response functions. This may be partly due to 
the necessity of involving complex mathematics in the 
derivation of many of those functions, and partly to 
the fact that in the past decades pulse responses are 
seldom measured. Hence the pulse response functions 
for quite a number of famous dielectric formulae are 
still unknown. 

In this paper, we examine how pulse response func- 
tions may be worked out from susceptibility formulae 
by various integral transform methods. As the deriv- 
ation details are lengthy and complex, only the final 
expressions are presented. In many cases, we need to 
specialize some parameters to make the derivation 
manageable. Our results are presented in Tables I and 
II together with some known responses. Then we 
discuss the asymptotic forms Of the pulse response 
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functions according to which a natural classification 
into three categories is possible. Lastly we examine the 
adequacy of the time domain behavior of the Shin- 
Yeung empirical formula [13] in the description of the 
susceptibility of glycerol. 

2. The pulse response funct ions 
In this work, the pulse response function ~b(t) is de- 
fined in such a way that its Laplace transform &o to io) 
is the spectral shape function i(o)), i.e. 

= 5qito[qbl = .(o e-U~ (3) i(o)) 

Here i(o)) is properly normalized so that i f (0)= 1. 
Note that the step response function ~(t) can be 
expressed in terms of the pulse response function 
qb(t) by 

r = qb(t) dt 

which satisfies the boundary conditions that 0(0) = 1 
and ~(oo) = O. 

2.1. Pulse response functions from complex 
susceptibility 

From Equation 3, the pulse response function is given 
by the inverse Laplace transform ~ - 1  (or inverse 
Fourier transform o~- t as the spectral shape function 
must satisfy the Kramers-Kronig relations) as follows 

= = 

_ 1 I ~176 eitOt if(o)) do) (4) 
2rt j-oo 

Although it is usually a formidably difficult task to 
evaluate this integral analytically for many suscepti- 
bility formulae, we find it possible to obtain analytical 
results for some special cases of a given formula by 
making use of tables of Fourier transforms available in 
the literature (see e.g. reference [171). Consider a 
special case of the Havriliak-Negami [81 formula 
F(o)) = [1 + (io)z)*-~] -~ with a = 1. Using Equation 
4, we get 

dp(t)-  213 [2t'~/Z-'et/Z,D_~_t((2t/z), ) 
z(2=) { \ 1: J 

-- ; , ; ,  3} 
where F, Dv and t F t ( ;  ; ) are, respectively, the 
gamma, parabolic cylinder and confluent hypergeo- 
metric functions (see [18] for their definitions). It is 
noted that the present i(o)) is also a special case of 
Equation 2 with a = 13, b = 1/4, c = a/4 and 0 = i. 

If we apply Equation 4 to the Nakamura-Ishida 
formula [9] i(m) = 1/[1 + i~o)z], 0 < 13 _< 1 then we 
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get 

{ t .  13rc 
d~(t) = exp -- ~sln T 

i ( ( 1 3 -  1)= t 13='  +  cosT) } 
k 

which is in general complex unless [3 = 1. This result is 
physically unacceptable because the formula itself has 
the innate defect of not fulfilling the Kramers-Kronig 
relation. Hence, we shall discard further analysis of it 
in this paper. 

2.2. Pulse  r e s p o n s e  f u n c t i o n s  f rom loss part  
Very often there are many empirical formulae on the 
loss part of the dielectric constant only, i.e., the 
imaginary part F" of the spectral shape function 
if(o)) - F'(o)) - i F"(o)). It is therefore better to derive 
the pulse response function directly from F" via the 
Fourier Sine transform ~s: 

qb(t) = 2 - ~ [ F "  1 - -  2~J~N{~_it[Ftt]} 

2 
I ~176 sin cot F"(O)) do) (5) 

7I 30 

Here we are able to apply Equation 5 to special cases 
of the following dielectric loss expressions. 

(a) For the gonscher formula [11] with n = m, 

sin(mr) (0o)x)" 
F"(o)) = 

2 (1 + 0o)z)" 

We obtain 

( t )  + F(n)sin(nr 0 ( t  ~ - "  
qb(t) ~ , s i n  ~ ~ \ b--~ j 

X Jc*e e i "~ t it 

and the real part of the spectral shape function 

1 - cos(nrc)x" 1 - x" 
F'(o)) = + 

2(1 + x) 2(1 - x) 

where x = 0o)x. When we put n = { and 0 = 1, the 
present case is further reduced to a special case of the 
Fuoss-Kirkwood loss F"(o)) = ~/2 sech(~ ln(o)z)) with 

= 1. The corresponding qb(t) becomes 

( z  ~t/2 + s i n ( ~ ) - 2 = * s i n ( t +  4 )  "tqb(t) = \ ~ - j  

x c ( t )  + 2=*cos(t + 4 ) s ( t  ) 

where C and S are the Fresnel cosine and sine integrals 
respectively. 

(b) For the Hill formula [12] with s = 1, 

F 2 (o)z) m 
F"(co) = 

F ( ; ) F ( T ) ' - "  El +  o ,21,1 



We obtain 

x ~F 2 1 +  2 '  2 '.2; 

+ 2 / \ 2 / 

1 - - n + m .  
X 1F2 2 ' 

n 
1 2 '  2 ' 

where ~F2( ; ,  ; ) is a generalized hypergeometric func- 
tion. We may concisely express d0(t) in terms of a single 
Meijer's G-function (see [18] for the definition) so that 

re{ 
~ ( t )  = 

x G  
- n  1 

~ - , ~ ,  0 

Putting the above do(t) into Equation 3, we get the 
complex spectral shape function 

P(o )  = m 
(1 + n ) 0  + X 2) 

( l + n - - m  3 + n .  1 ) 
X 2F1 1, 2 2 ' 1  --}-X 2 

+(tan2 

X m 

X 
(1 x2~j ,, - .  + ,.)/z + 

7~ 

where x = mr and B(,) and 2F1(  , ; ; ) are the Beta and 
Gaussian hypergeometric functions, respectively. 

(c) For the Shin- Yeung formula [5] with b = �89 [13], 

rt F(a) xa/2 -c 
F"(o) = 

2 F ( 2 - c ) F ( 2 +  c ) (1  + x y  

where x = 0m~. To make the parameters compatible 
with Hill's and Jonscher's expressions, we take a = 1 

- n + m and c = (1 - n - m)/2 so that 

"It, X m 

F'(o) = ~B(rn, 1 -- n)( 1 x )  l - n + m  + 

and the real part has been obtained [13] from a 
Hilbert transform as 

- -  ~ X  m 

F'(m) = 
2B(m, 1 - n) sin(mr0 

I cos mn 1 1 
x (1 + x) 1-"+m + (1 - x) 1-"+m 

+ � 8 9  - n;1  - -  rn ;x)  

+ 2F1(1,1 - n;1 - m; - x)] 

The corresponding pulse response function is found 
by Equation 5 to be 

it 

,(t) = ~o m J ~  e ~,F1 n - m ; l + n ; i g  ~ 

r(.) ( t )  -~ 
+ OrB(m, 1 - n) 

I ) ( T it 
• ~r e i n~_~ 1F1 - m ; 1  - -  n ;  

which becomes identical to the one for the Jonscher 
expression when we set n = m. 

2.3. Pulse response func t ions  from 
dis t r ibut ion of relaxation t ime 

Occasionally, there are dielectric susceptibility for- 
mulas based on the distribution function g(~) of re- 
laxation time z which is related to the spectral shape 
function by 

fo g(~) & P(o)  = 1 + io~ 

from which we can find the pulse response function 

qb(t) = f o  g(~)e-'/*d~z (6) 

Here we apply this equation to the following distribu- 
tion functions. 

(a) Kirkwood-Fuoss distribution function [14], 

"~o g(~) - (~ + %)2 

where the exponential integral 

x~176 y 
Et(x  ) =- dy. 

Y 

Fflrthermore, we get the complex spectral shape func- 
tion by Equation 3 

1 ~ x  
P(o )  = ~ i ~ [ ~ ]  = 

1 - ix 2(1 - ix) = 

ix 
+ In x 

(1 - -  ix)  2 

where x = c0%. 

(b) M atsumoto- H igasi distribution function [16], 

g(z) = P ~p-1 f o r  "c 2 < T < "~1 

= 0 otherwise. 
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We obtain 

4 , ( t )  = 

and 

P(~o) = 

P 
(1 - p ) ( r ~  - T~)  

• -- t )  
{ ~ , F ~ ( 1 - -  p;2--  p; T'2 

1 I F ~ ( 1 -  p;2 _ p; -- 

P 
(1 - p ) ( ~  - ~ )  

1 
zP 2Fl(1,1;  2 - P ; ~ )  

x L( 1 + ir176 

q 
(1 + imz~) 

Originally, Matsumoto and Higasi had obtained 
the expressions of qb(t) and tT(m) for the values of 
p =  +_1/3, ___1/2and +2 /3on ly .  

2.4. Summary of pulse response functions 
Having obtained pulse response functions by various 

integral transforms, we tabulate in Tables I and II our 
results together with those known from the literature 
for the following often-quoted formulae. 

1 
(a) Debye [ 2 ] : - -  

1 + i x  

1 
(b) Cole-Cole [6]: 1 + (ix) 1 -~ for 0 < a < 1 

with the special case ~ =  1/2 and F(m)= 
1/[1 + (ix) 1/2] 

(c) Davidson-Cole [7]: 1/(1 + ix)~ for 0 < 13 < 1 

(d) Williams-Watts [3]: 

n = l  F ( / ' /  + 1) \ i x /  
f o r 0 <  [~ < 1 

(e) Oissado-Hill [4]: 

F(1 - n  + m)zFl(1 - n, 1 - m;2 - n;1/(1 + ix)) 
F(2 - n)F(m)(1 + ix) ' -"  

(f) Frdhlich [15]: 1 f,  U'~1(1 "11- (,02T2) 1/2 ] 
ln(z~/z2) ~mL~2(1 + o2z~)l/2J 

- i(tan- 1 coz~ - tan-  1 coz2) t 
d 

In the above formulae, x stands for c0z. 

T A B  L E  I Pulse response funct ions for complex dielectric formula  

F o r m u l a  Pulse response funct ion d~(t) 

1 
Debye  - e -  t/~ 

1 ~ ( - - 1 ) "  
Cole -Cole  

~.~1 r (n(~-  1)) 

1 = ( -  1 ) " ( ~ )  n ( 1 - a ) - a  

z . ~ o  F((n + 1)(1 - a)) 

1 . 
(r~z t) - �89 - - e tit t r f c  [( t/z)= ], 

,r 

D a v i d s o n - C o l e  zF(I] ) \ ' t  } 

Wi l l i ams -Wat t s  15 ( t ~ l ~ -  1 e - (t/~)~ 

K i r k w o o d - F u o s s  ! { ( ~ +  1 ) e t / ~ E l ( ~ )  - 1} 

e-t /x1 _ e -  t/% 
Fr6hl ich  z z < % 

t In (%/%) 

Havr i l i ak -Negami  2[~ ( 2 t ) 1 3 / 2 - 1  
(with a = 1/2) z (2n)~ \  "c ] et/2~O-I~- 1((2t/~)�89 

M a t s u m o t o - H i g a s i  

Di s sado-Hi l l  

, for t > z 

for t < "~ 

for a = 1/2 

P -- 1Fx 1 -- p ;2  - p; 
(1 - -  p)( 'r~ - -  z ~ )  xF1  1 - -  p ; 2  - -  p ;  "~2 

F ( l _ n + m ) e _ t / x ( ! ) - "  ( t )  1F 1 1 - m ; 2 -  n ;~  

zF (1  - n )F(2  -- n)F(m) 
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T A B L E  II  Pulse response functions for special cases of dielectric loss models 

Model  Parameters  Pulse response function ~(t) 
(special case) of Equat ion 2 

F u o s s - K i r k w o o d  a = 1, b = 1/2 

( ~ = 1 / 2 )  c = 0 ,  0 = 1  

Jonscher  a = 1, b = 1/2 

(~ = m) c = ~ - 

Hill 1 - n + m 
a , b = l  

(s = 1) 2 

1 - - n - - w /  
c , 0 = 1  

2 

Shin-Yeung a = 1 - n + m, b = �89 

1 - n - m  
(b = �89 c 

2 

(2nzt) ~ + sin - sin + 4 ]  k z ]  + 2~c~ 

1 ( t ) F ( n ) s i n ( n r t ) { ! ' ~ - .  [ i ( " ~  ; 5 - - ' )  ( 
~ s i .  ~ + ~0~ \ 0  V • j "  e , ,V, - 

t z 2 ~ :  g~21 

, c F ( m ~ F ( I -  n~  ~ ' 3  2zz -- n 1 

+ ~ s  t 

- -m I ( nitS] n0"c "r  e ~ , F ,  n -- m;1 + ; ~ j j  

+ 0~B(m, 1 -- n) ~r e 2 1F 1 _ m; 1 - n ; ~  

3. Discussion 
In Section 2.1 we obtained a generally complex pulse 
response for the Nakamura-Ishida formula unless 
13 = 1, in which case it reduces to the Debye formula. 
Nakamura  and Ishida have remarked that their for- 
mula does not satisfy the Kramers-Kronig relations. 
Our result explicitly demonstrates that causality is not 
observed and hence confirms their conclusion. 

In the course of this work we also obtained some 
complex susceptibility expressions in closed form by 
transforming from pulse response functions. These 
correspond to the Hill formula with s = 1, the 
Kirkwood-Fuoss  distribution of relaxation times and 
the Matsumoto-Higasi  distribution, and are found in 
Sections 2.2(b), 2.3(a) and 2.3(b), respectively. 

The pulse response functions qb(t) for the various 
dielectric formulae discussed take very different func- 
tional forms, with some depending on higher trans- 
cendental functions that are not easily visualized. One 
way to understand these pulse responses systematic- 
ally is provided by their asymptotic behaviour in the 
short time and long time limits. These are calculated in 
Tables III and IV, and generally follow a power law or 
approach a constant. As far as asymptotic behaviour 
is concerned, pulse response functions are thus seen to 
fall into three classes, or progressive generality: 

Class I: do(t ~ 0) = constant and do(t --+ oo ) = 0; 

ClasslI:do(t ~ 0) ~ t - " anddo ( t  ~ ~ ) = 0 ;  

Class III: do(t ~ 0) ~ t - "  and 

do(t --~ ~ )  ~ t - ( m + 1 ) ;  

where the power-law exponent parameters n and m lie 
between 0 and 1. 

It is found that the pulse response functions of the 
Debye model and the two distribution-of-relaxation 
models, to wit, the Fr6hlich and Matsumoto-Higasi  

models all fall in Class I. These models were known to 
be of limited applicability in fitting many dielectric 
data and many modifications had been suggested. 
Amongst those modifications, the do(t)'s of the 
Davidson-Cole, Williams-Watts, and Havriliak- 
Negami formulae belong to Class II but they are still 
restrained in the low-frequency region which corres- 
ponds to the long time limit of the pulse response 
functions. We have also tentatively classified the 
Kirkwood-Fuoss  formula into Class II even though 
the short time limit of its pulse response is logarithmic 
instead of a simple power. Currently, a highly success- 
ful dielectric model is called the universal model of 
Jonscher [11], who, by analysis of the dielectric data 
of a wide range of materials, found that the dielectric 
loss formula is characterized by the double slopes in 
the graph of log F"(co) against log co. Specifically, 
F"(c0) follows co '~ at the low-frequency region and 
co - " - " )  at the high-frequency region. In the time 
domain, the pulse response function do(t) follows 
t -c"+1) at long time limit and t - "  at short time limit 
and so it is categorized into a distinct Class III. The 
Cole-Cole and Dissado-Hill formulae of Table III 
and all those listed in Table IV belong to this class. 

Class III behaviour is given physical rationale by 
Dissado and Hill who suggested that the dominant 
physical mechanisms in those two time regions are the 
slow dipolar flip-flop process and the fast dipolar 
tunnellin9 process, respectively. Based on these mech- 
anisms, they have derived a pulse response function 
d0(t) of the form e-t/~t-"lF~(;;t/~) from which they 
have obtained a closed form expression for the com- 
plex dielectric susceptibility formula. The spectral 
shape function if(o)) of their model is a Gaussian 
hypergeometric function of 1/(1 + koz) for which it is 
difficult to separate the real F'(co) and loss F"(c0) parts 
analytically. As mentioned in the Introduction (Sec- 
tion 1), this function is not directly related to Equation 
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T A B L E I II Asymptotic forms of pulse response functions for various complex dielectric models 

Model Short time limit t --* 0 Long time limit t ~ ~ Class 

1 

Debye 

Cole-Cole zF(1 - -  ct) 

.o- ole ' 0 ) -"  
(~ = ~) ~n* 

1 ( t )  -(1 - I], 
Davidson-Cole zF([3) 

~ ( t ) - ( 1 - B )  
Williams-Watts ~- 

l ln(Z '~  Kirkwood-Fuoss z" \ t J  

1Ix 2 -- 1/~ 1 
Fr6hlich 

In (xl/x2) 

Havriliak-Negami x F ~ )  ( ~ )  1 3 / 2 1 3 ~ 2  I~ + 1 - 1 

{, Matsumoto-Higasi (1 - p)(z~ - z~) z ~  -v q [ ; }  

0 I 

. ) / , x  -- - -  c - i  - III 
�9 r(~) \ '~ )  

1 (t'~ -3/2 
2 z ~  \ ~  j III 

0 II 

0 II 

0 IP  

0 I 

0 II 

0 I 

ttt 
- n  

F(1 - n + m) ~ F(1 - n + m ) s i n ( m n ) ( t ~  - 1 - "  
Dissado-Hill xF(1 - n)r(2 - n)r(m) ~ i ~ i  Z ~ \ x )  III 

a Nominal classification. 

TABLE IV Asymptotic forms of pulse response functions for special cases of dielectric loss models 

Model Short time limit t ~ 0 Long time limit t ~ -  oo Class 

Fuoss-Kirkwood 1 (t~7"2 
(~ = �89 ~(2~)~ \~)  

Jonscher s i n ( n n / 2 ) ( t ) - "  

(n = m) O~-~T ~ n) 

Hill \ 
(s = 1) ~-r(-m~)F-O : 

n ~  

Shin-Yeung V(n)sin~- ( t ~ -"  

(b = �89 g,~ ~(m, 1 - , 0 \ ~ )  

2x(2n) ~ III 

l + n  
n s i n - ~ - - n  . t"  -1 - .  

[ 1 - n + m \  . m +  1 
2 F t - - - 2 - - - ) s m T n ( r ~ _ m _ l  

- t,c) 

l + m  
mF(1 - n + m ) s i n - - n  2 

III 

III 

2, and hence it will be of interest to examine how it 
differs numerically from expressions compatible with 
Equation 2. The recent Shin-Yeung empirical formula 
[ 13] is one such expression corresponding to b = �89 in 
Equation 2, and has a Class III pulse response. As 
regards this paper, we shall compare the pulse re- 
sponse functions of the Shin-Yeung and Dissado-Hill 
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formulae with power-law exponent parameters 
n = 0.48 and m---0.68 obtained from the dielectric 
susceptibility of glycerol [19]. The responses are plot- 
ted in Fig. 1. It is found that the Dissado-Hill curve is 
slightly lower at both short-time and long-time re- 
gions but the difference is not very significant. On this 
basis, and on the basis of an earlier comparison [13] 



2.0 

1.0 

0.0 

~~ -2.0 ~\ 
\\\  

-3.0 

- 4 . 0  J _ _  L J 

-3.0 -2.0 -1.0 0.0 1.0 ?..0 

Log t/'~ 

Figure 1 Logarithmic graph of pulse response functions dp(t) for the 
Shin-Yeung (solid line) and Dissado-Hill  (dash line) susceptibility 
formulae with power-law exponent parameters n = 0.48 and 
m = 0.68 for glycerol. The horizontal axis is log t/z while the vertical 
one is log 0zdp(t) where 0 = 1 in the Dissado-Hill  case. 

with the Jonscher formula in the frequency domain, 
we believe that the recent Shin-Yeung formula pro- 
vides an adequate alternative description of dielectric 
response. 
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